
1

Formal Verification Applied to the
Renesas MCU Design Platform

Using the OneSpin Tools

Toru Shimizu, Ph.D. and
Satoshi Nakano, Renesas Electronics Corp.
Colin Mason, OneSpin Solutions Japan K.K.

2013.02.03

© Renesas Electronics Corporation. All rights reserved.

2

Authors	

n  Toru Shimizu, Ph.D.

 Senior Chief Professional

 Technology Planning Div Technology Development Unit

 Renesas Electronics Corporation

 +81(3)4226-6591

 toru.shimizu.xn@renesas.com

n  Satoshi Nakano,

　　　Section Manager, MCU Platform Development Department 1

 Platform Integration Division, Technology Development Unit

 Renesas Electronics Corporation

 +81(72)787-5230

 satoshi.nakano.vj@renesas.com

n  Colin Mason

 Business Development Manager

 OneSpin Solutions Japan K.K.

 +81(3)4530-3865

 colin.mason@onespin-solutions.com

3

Abstract	

n  Due to the wide range of different MCU types that are developed within a series of

Renesas MCU’s in order to satisfy different applications we have developed the

MCU-PF platform for both design and verification of a complete series of MCUs. A

key issue is the effective verification for a combination of multiple IP components -

this presents a significant task.

n  The test-case based simulation method of verification is widely used, but test-

cases are not reusable among MCU designs, and modification of the test-cases

and the testbench takes a long time. Verification coverage is only partial when

using test-case based simulation. As such we have developed the capability to use

a Formal method of verification that provides full coverage of combinations of

assertions while delivering significant reductions in both testing and verification

time. Additional efficiency has been gained because the IP-Assertions are fully

reusable along with the IP itself. This paper explains the methodology, its

advantages and performance results compared to the simulation verification

method.

3

4

Within A Single MCU “Series” There Are A Wide
Variety of Products:
 – This Is The Driver For MCU-PF

5

What is the MCU Platform (MCU-PF) ?
-  MCU-PF is a platform for the efficient development of

new products within the same series -

Peripheral Bus	

Reset	 Clock	 Interrupt
Request	Communication	

CPU	 DMAC	

RAM	 ROM	

System
Control	 INTC	

Peripheral
IPb	

Peripheral
IPa	

Internal Bus	

Port1	 Port2	 Port3	

Selection of memory size	

Change of interrupt factors	

Change of bus bridge	

Selection of peripheral IP	

Selection of port and package	

6

MCU-PF Configuration	

n  Services provided by MCU-PF for MCU development are PF-Modules, IP
Modules, Connection Rules and PF and IP Assertions.

MCU Developed by MCU-PF

IP-Modules	PF-Module

DMAC	

CPU	

Function
Modules	

IPa

IPb	

IPc	

IPd	

IPa-Assertions	

PF-Assertions	

IPb-Assertions	

IPc-Assertions	

Ipd-Assertions	

Connection Rules	

Common to a
Series	

Specific to Product
Type

7

MCU Development-Flow Based on MCU-PF	

①  Module Verification: The PF-Module is sufficiently verified in advance and
IP-Modules are verified before they are connected to PF-Modules.

②  MCU Configuration: An MCU is configured by connecting the PF-Module
and selected IP-Modules from the IP-Library checking Connection-Rules.

③  MCU Verification: The MCU design is verified for operation combinations
among the PF-Module and IP-Modules.

① PF-Module
Verification	

IP-Library	

① IP-Module
Verification	

③ Combinational　
Verification	

MCU Developed by MCU-PF

IP-
Modules	

PF-
Module

DMAC	

CPU	

Function
Modules	

IPb	

IPc	

IPd	

PF-
Assertions	

IPb-
Assertions	

IPc-
Assertions	

Ipd-
Assertions	

Connection
Rules	

IPa
IPa-

Assertions	

② MCU
Configuration	

PF-
Module

DMAC	

CPU	

Function
Modules	

PF-
Assertions	

IPa
IPa-

Assertions	

IPa
IPa-

Assertions	

IPa
IPa-

Assertions	

8

The Challenge of MCU Verification	

n  Verification of operation combinations of multiple IP-Modules is a
significant task.

n  If the IPc is the verification target, its operation should be verified
on EVERY combination of parallel operations of IPa, IPb and IPd.

n  The number of operation combinations becomes huge!

MCU

IP-
Modules	

PF-
Module

DMAC	

CPU	

Function
Modules	

IPb	

IPc	

IPd	

PF-
Assertions	

IPc-
Assertions	

Verification
Target

Ipd-
Assertions	

IPa
IPa-

Assertions	

IPb-
Assertions	

IP
Combination	

IPa	 IPb	 IPc	 IPd	

Operation
Combination	

←/⇔/→	 No	 Target	 No	

No	 ←/⇔/→	 Target	 No	

←/⇔/→	 ←/⇔/→	 Target	 No	

:	 :	 :	 :	

Clock	
Target Operation Timing	

Operation Before the Target [←]	
Operation at the Same Time [⇔]	

Operation After the Target [→]	
No Operation [No]	

9

Simulation Verification of MCUs	

n  Verification is done by simulating test-cases on a testbench
n  Each test-case controls all IPs, including target and related IP
n  All test-cases and the testbench must be revised for a different

MCU configuration, even if most of the IP is reused
n  The verification coverage depends on the test-cases

Test-Cases:
・Target IP Control (IPc)
・Related IP Control (IPa & IPb)
・PF-Module Control
・Other Non-related IP Control
・Expected Results	

 Test Bench	 Testbench	

MCU

IP-
Modules	

PF-
Module

DMAC	

CPU	

Function
Modules	

IPb	

IPc	

IPd	

PF-
Assertions	

IPc-
Assertions	

Ipd-
Assertions	

IPa

IPb-
Assertions	

IPa-
Assertions	

Verification
Target

Simulator	

10

Formal Verification of MCUs	

n  Verification proves consistency of formal assertions for given IP
combinations.

n  Each set of formal assertions includes only descriptions of the
specified IP. It is reusable, similar to the IP.

n  The verification coverage is perfect, if it is proved.

MCU

IP-Modules	PF-Module

DMAC	

CPU	

Function
Modules	

IPb	

IPc	

IPd	

PF-Formal-Assertions
(Suppose & Prove)	

IPc-Formal-Assertions
(Suppose & Prove)	

IPd-Formal-Assertions
(Suppose & Prove)	

IPa

IPb-Formal-Assertions
(Suppose & Prove)	

IPa-Formal-Assertions
(Suppose & Prove)	

Verification
Target

Formal Verifier

11

An Example of a Formal Assertion	

n  Only INTC resources specified in assertion
////////// timing ////////////////////////////
 sequence t_req_a; await(nxt(t,1), !ir_sig, max_a_wait); endsequence
 sequence t_req_n; await(nxt(t_req_a,1), ir_sig, max_n_wait);
endsequence
 ////////// property ////////////////////////////
property ir_cpu_negedge(ir_sig,ir_num,ier,ier_v,ipr,level,irqmd,ir);
 disable iff(`intc.RESET_BUS == 1'b0)
 // set SFR of INTC
 during(t,nxt(t_req_n,2),ier == ier_v) and
 during(t,nxt(t_req_n,2),ipr == level) and
 during(t,nxt(t_req_n,2),irqmd == 2’b01) and
 during(t, nxt(t, 0), ir == 1'b0) and
 // set Interrupt input (ir_sig)
 during_excl(t_idle, t_req_a, ir_sig) and
 during_excl(t_req_a, t_req_n, !ir_sig) and
 during(t_req_n, nxt(t_req_n,1), ir_sig) and
implies
 // check Interrupt output
 during(nxt(t_req_a,2),nxt(t_req_n,2),‘INTNUM[7:0]==ir_num) and
 during(nxt(t_req_a,2),nxt(t_req_n,2),‘INTRQLV[3:0]==level) ;
endproperty

Setup interrupt
timing

Initialize interrupt
controller INTC

Setup interrupt
source

Check that INTC
accepts interrupt

12

Evaluation of Our Formal Method	

Test Spec. of Each
Test-case or Assertion	

1.  Simulation

2. Formal Verification

a.  Prove an IP-assertion
on the PF-assertion

b. Prove combination
 of all IP-assertions
 on the PF-assertion

Interrupt Timing x
Interrupt Req. Src. x
Interrupt Ack. Dest.

1 timing x
1 source x
5 destination x
547 test-cases

1 timing x
1 source x
5 destinations,
on PF-assertion	

1 timing x
1 source x
5 destinations x
2^547 combinations	

Development
Test-case
or Assertion	

Language	 Assembly Lang.	 Operational ABV	

# Tests	 547	 547	

# Lines	 131,280	 12,729	

Development	 40.8 days	 4.5 days	

Testing	 Total Time	 547.0 Hour	 9.0 Hour	 72.9 Hour	

n  Test development and execution data for “INTC.”
n  The formal method achieves full coverage verification for

any combination of interrupt sources within a practical time.

-  An interrupt source is selected from 547 request events in the INTC.
-  An interrupt destination is selected from CPU and 4 channels of DMAC in the PF.	

13

Evaluation of Our Formal Method	

Specification of each
testcase or assertion	

Simulation

Formal Verification

Prove an IP-assertion
on the PF-assertion

Prove combination
of all IP-assertions
on the PF-assertion

Interrupt Timing
Interrupt Req. Source
Interrupt Ack. Destination

1 timing x
1 source x
5 destination x
547 testcases

1 timing x
1 source x
5 destinations x
on PF-assertion	

1 timing x
1 source x
5 destinations x
2^547 combinations	

Develop.
Statistics

Language	 Assembly Lang.	 Operational ABV	

# Tests	 547	 547	

# Lines	 131,280	 12,729	

Dev. Time	 40.8 days	 4.5 days	

Execution	 Total Time	 547.0 hours	 9.0 hours	 72.9 hours	

n  Test development and execution data for “INTC.”
n  The formal method achieves full coverage verification for

any combination of interrupt sources within a practical time.

-  An interrupt source is selected from 547 request events in the INTC.
-  An interrupt destination is selected from CPU and 4 channels of DMAC in the PF.	

14

Ｓｕｍｍａｒｙ	

n  MCU-PF has been developed for both design and verification of a
series of MCUs. Effective verification for a combination of
multiple IP components is a significant task.

n  The test-case simulation method is widely used, but test-cases
are not reusable among MCU designs, and modification of the
test-cases and the testbench takes a long time. Verification
coverage is partial in the test-case simulation.

n  Our proposed use of the Formal Methods (OneSpin) provides full
coverage of combinations of assertions while delivering
significant reductions in both testing and verification time.
Additional efficiency is delivered because the IP-Assertions are
reusable along with the IP itself.

15

Platform IP Combination	

n  MCU-PF provides a standardized design and verification platform
for a series of MCUs. Verification of IP combination significant task

n  Simulation widely used, but testcases are not reusable, time
consuming to develop, and provide only partial coverage

n  Formal Methods provide full coverage of IP combinations while

delivering 9X reduction development time, 7X reduction execution
time, and reusable tests

16

Thank you!	

