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Abstract	
 

n  Due to the wide range of different MCU types that are developed within a series of 

Renesas MCU’s in order to satisfy different applications we have developed the  

MCU-PF platform for both design and verification of a complete series of MCUs. A 

key issue is the effective verification for a combination of multiple IP components - 

this presents a significant task. 

n  The test-case based simulation method of verification is widely used, but test-

cases  are not reusable among MCU designs, and modification of the test-cases 

and the testbench takes a long time. Verification coverage is only partial when 

using test-case based simulation. As such we have developed the capability to use 

a Formal method of verification that provides full coverage of combinations of 

assertions while delivering significant reductions in both testing and verification 

time. Additional efficiency has been gained because the IP-Assertions are fully 

reusable along with the IP itself. This paper explains the methodology, its 

advantages and performance results compared to the simulation verification 

method.  
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Within A Single MCU “Series” There Are A  Wide 
Variety of Products: 
      – This Is The Driver For MCU-PF 
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What is the MCU Platform (MCU-PF) ? 
-  MCU-PF is a platform for the efficient development of 

new products within the same series - 
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MCU-PF Configuration	

n  Services provided by MCU-PF for MCU development are PF-Modules, IP 
Modules, Connection Rules and PF and IP Assertions. 

MCU Developed by MCU-PF 

IP-Modules	PF-Module 

DMAC	

CPU	

Function 
Modules	

IPa 

IPb	

IPc	

IPd	

IPa-Assertions	

PF-Assertions	

IPb-Assertions	

IPc-Assertions	

Ipd-Assertions	

Connection Rules	

Common to a 
Series	

Specific to Product 
Type 



7 

MCU Development-Flow Based on MCU-PF	

①  Module Verification: The PF-Module is sufficiently verified in advance and 
IP-Modules are verified before they are connected to PF-Modules. 

②  MCU Configuration: An MCU is configured by connecting the PF-Module 
and selected IP-Modules from the IP-Library checking Connection-Rules. 

③  MCU Verification: The MCU design is verified for operation combinations 
among the PF-Module and IP-Modules. 
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The Challenge of MCU Verification	

n  Verification of operation combinations of multiple IP-Modules is a 
significant task. 

n  If the IPc is the verification target, its operation should be verified 
on EVERY combination of parallel operations of IPa, IPb and IPd.  

n  The number of operation combinations becomes huge! 
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Simulation Verification of MCUs	

n  Verification is done by simulating test-cases on a testbench 
n  Each test-case controls all IPs, including target and related IP  
n  All test-cases and the testbench must be revised for a different 

MCU configuration, even if most of the IP is reused  
n  The verification coverage depends on the test-cases  
 

Test-Cases: 
・Target IP Control (IPc) 
・Related IP Control (IPa & IPb) 
・PF-Module Control 
・Other Non-related IP Control 
・Expected Results	
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Formal Verification of MCUs	

n  Verification proves consistency of formal assertions for given IP 
combinations. 

n  Each set of formal assertions includes only descriptions of the 
specified IP. It is reusable, similar to the IP. 

n  The verification coverage is perfect, if it is proved. 
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An Example of a Formal Assertion	

n  Only INTC resources specified in assertion 
////////// timing //////////////////////////// 
 sequence t_req_a; await(nxt(t,1), !ir_sig, max_a_wait); endsequence 
 sequence t_req_n; await(nxt(t_req_a,1), ir_sig, max_n_wait); 
endsequence 
 ////////// property //////////////////////////// 
property ir_cpu_negedge(ir_sig,ir_num,ier,ier_v,ipr,level,irqmd,ir); 
  disable iff(`intc.RESET_BUS == 1'b0) 
  // set SFR of INTC  
  during(t,nxt(t_req_n,2),ier == ier_v) and 
  during(t,nxt(t_req_n,2),ipr == level) and 
  during(t,nxt(t_req_n,2),irqmd ==  2’b01) and 
  during(t, nxt(t, 0),  ir ==  1'b0) and 
  // set Interrupt input (ir_sig) 
  during_excl(t_idle, t_req_a, ir_sig ) and 
  during_excl(t_req_a, t_req_n, !ir_sig ) and 
  during(t_req_n, nxt(t_req_n,1), ir_sig ) and 
implies 
  // check Interrupt output 
  during(nxt(t_req_a,2),nxt(t_req_n,2),‘INTNUM[7:0]==ir_num) and 
  during(nxt(t_req_a,2),nxt(t_req_n,2),‘INTRQLV[3:0]==level) ; 
endproperty 
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Evaluation of Our Formal Method	

Test Spec. of Each 
Test-case or Assertion	

1.  Simulation 

 

2. Formal Verification 

a.  Prove an IP-assertion 
on the PF-assertion 

b. Prove combination 
 of all IP-assertions 
 on the PF-assertion 

Interrupt Timing x 
Interrupt Req. Src. x 
Interrupt Ack. Dest. 

1 timing x 
1 source x 
5 destination x 
547 test-cases 

1 timing x 
1 source x 
5 destinations, 
on PF-assertion	

1 timing x 
1 source x 
5 destinations x 
2^547 combinations	

Development 
Test-case 
or Assertion	

Language	 Assembly Lang.	 Operational ABV	

# Tests	 547	 547	

# Lines	 131,280	 12,729	

Development	 40.8 days	 4.5 days	

Testing	 Total Time	 547.0 Hour	 9.0 Hour	 72.9 Hour	

n  Test development and execution data for “INTC.” 
n  The formal method achieves full coverage verification for 

any combination of interrupt sources within a practical time. 

-  An interrupt source is selected from 547 request events in the INTC. 
-  An interrupt destination is selected from CPU and 4 channels of DMAC in the PF.	
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Evaluation of Our Formal Method	

Specification of each 
testcase or assertion	

Simulation 

Formal Verification 

Prove an IP-assertion  
on the PF-assertion 

Prove combination 
of all IP-assertions 
on the PF-assertion 

Interrupt Timing 
Interrupt Req. Source 
Interrupt Ack. Destination 

1 timing x 
1 source x 
5 destination x 
547 testcases 

1 timing x 
1 source x 
5 destinations x 
on PF-assertion	

1 timing x 
1 source x 
5 destinations x 
2^547 combinations	

Develop. 
Statistics 

Language	 Assembly Lang.	 Operational ABV	

# Tests	 547	 547	

# Lines	 131,280	 12,729	

Dev. Time	 40.8 days	 4.5 days	

Execution	 Total Time	 547.0 hours	 9.0 hours	 72.9 hours	

n  Test development and execution data for “INTC.” 
n  The formal method achieves full coverage verification for 

any combination of interrupt sources within a practical time. 

-  An interrupt source is selected from 547 request events in the INTC. 
-  An interrupt destination is selected from CPU and 4 channels of DMAC in the PF.	
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Ｓｕｍｍａｒｙ	

n  MCU-PF has been developed for both design and verification of a 
series of MCUs. Effective verification for a combination of 
multiple IP components is a significant task. 

n  The test-case simulation method is widely used, but test-cases  
are not reusable among MCU designs, and modification of the 
test-cases and the testbench takes a long time. Verification 
coverage is partial in the test-case simulation. 

n  Our proposed use of the Formal Methods (OneSpin) provides full 
coverage of combinations of assertions while delivering 
significant reductions in both testing and verification time. 
Additional efficiency is delivered because the IP-Assertions are 
reusable along with the IP itself.  
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Platform IP Combination	

n  MCU-PF provides a standardized design and verification platform 
for a series of MCUs. Verification of IP combination significant task 

n  Simulation widely used, but testcases are not reusable, time 
consuming to develop, and provide only partial coverage 

 
n  Formal Methods provide full coverage of IP combinations while 

delivering 9X reduction development time, 7X reduction execution 
time, and reusable tests 
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Thank you!	


