
The content of this article was presented at DVCon 2007 and is posted with DVCon’s permission.

Complete Formal Verification of TriCore2
and Other Processors

Jörg Bormann, Sven Beyer, Adriana Maggiore,
Michael Siegel, Sebastian Skalberg

OneSpin Solutions GmbH
Munich, Germany

<firstname>.<lastname>@onespin-solutions.com

Tim Blackmore,
Fabio Bruno

Infineon Technologies
Bristol, UK

<firstname>.<lastname>@infineon.com

Abstract
This paper describes an innovative and powerful

methodology for the complete formal verification of modules
and intellectual property (IP), and its application to the
verification of processor IP. Unlike other formal approaches,
the methodology is a self-contained approach to hardware
verification, independent of simulation. The methodology
eliminates all gaps in the verification plan and in the
property set. It thus ensures that the IP is free of functional
errors − the highest possible verification quality. Its
underlying technology has been field-proven on hundreds of
modules and IP, two of which are described, including the
TriCore2 processor, Infineon's next generation high-end
processor for embedded and safety-critical applications.

I. INTRODUCTION
The objective of verification is to ensure that

implemented behavior and specified behavior are the
same. Intended behavior that is not explicitly captured in
the written specification will be referred to as “implicitly
specified behavior” or “implicit specification”. In order to
eliminate all deviations of the implemented from the
specified behavior, verification methodologies must
consider every possible input scenario to the design-under-
verification (DUV) and verify that every possible output
signal has its intended, specified value at every point in
time.

Established verification approaches, however, typically
do not identify all functional errors in a design. Errors that
remain undetected and make it into the final chip generally
fall into one of three types:

• Unstimulated error: an error where the input
stimuli used for verification fail to trigger the
error and thus prevent its observation.

• Overlooked error: an error that is stimulated, but
where there is no property, monitor or assertion
to observe and flag the erroneous behavior.

• Falsely accepted error: an error where erroneous
behavior is not detected because both the RTL

implementation and the properties, monitors or
assertions deviate in the same way from the
specified behavior, thus masking the error.

Simulation-based verification and traditional formal
verification have different strengths and weakness in
identifying such erroneous behavior.

A. Simulation-based Verification
Simulation-based verification approaches suffer from

all of these error escape types.

Simulation fails to stimulate errors because it cannot
deploy the multitudinous stimuli necessary to exhaustively
verify the IP in the project time available. Simulation
coverage metrics cannot relieve this situation – they can
only assist in the allocation of restricted verification
resources to measure progress and to incrementally
increase the quality of the verification.

Overlooked errors are handled by verification planning
and the subsequent derivation of suitable monitors and
assertions. Verification tasks are identified by (i)
examination of the specification and the architecture; (ii)
relating common design patterns to appropriate assertions
[3]; or (iii) asking the designers to note particularly
important relations between given signals. The
completeness of the resulting verification tasks is typically
compromised by the inability to devise monitors that
inspect all output signals constantly for all possible errors
that might occur, and by human error. Consequently, it is
essential to update the plan throughout verification in order
to capture new insights into unmet verification needs [1].

B. Traditional Formal Verification
Generally speaking, formal verification has similar

problems. Single properties are exhaustively proven with
respect to all possible input scenarios. However, the
properties typically have an implicative structure. When a
given input pattern occurs (for instance, a write request is
received by a bus arbiter), statements about the DUV state

The content of this article was presented at DVCon 2007 and is posted with DVCon’s permission.

and output behavior are made, (for instance, an
acknowledgement is transmitted). Thus a single property
typically verifies only a fraction of the possible input
scenarios and their associated output behaviors. This leads
immediately to the central questions in formal
verification: “Have I written enough properties, or are
there gaps in the property set? Is every possible input
scenario inspected and its effect on the states and outputs
verified by at least one property?”

This situation is exacerbated by the fact that most
assertions and properties can be proven only under specific
conditions that enforce realistic behavior of the DUV.
These conditions must be identified by the verification
engineer, who does not always possess the design
functionality knowledge necessary to correctly capture
them. Moreover, traditional formal verification typically
detects corner case problems only if the verification
engineer anticipates them – a major challenge in complex
designs. In other words, formal verification approaches
have not been able to produce the gap-free property set
that ensures an error-free design.

The result is that – until now – formal verification has
not enabled engineers to achieve complete verification.
Formal verification has been operating below its actual
potential [5]. In reality, it has often been downgraded to
verify only some aspects of a design in order to reduce
simulation run time.

However, formal verification can efficiently achieve
the essential completeness objectives when it deploys
systematic completeness analysis to identify gaps in a
property set.

C. Formal Verification With Completeness Analysis
The approach taken with this new methodology is

different from traditional property checking, in that it
investigates the quality of a set of properties. An automatic
completeness analysis formally checks whether a given set
of properties is stringent enough to determine a unique
value for every output of a module at every point of time,
and to do so for every possible input stimulus. It
automatically identifies and highlights input scenarios and
respective output behavior that are not yet verified by any
property, and insists upon its resolution. This ensures that
all functionality that contributes to the input/output
behavior of the design is thoroughly checked by at least
one property. Consequently, it eliminates gaps in the
property set, i.e. scenarios where the property set misses
erroneous implemented behavior.

Using this methodology, a set of properties must pass
both verification flows in Fig. 1: in the left, standard
property checking flow, the design is formally verified
against every property, while the right flow is used to
incrementally identify and close all gaps in the property set
until completeness is reached. The right flow is unique to
the presented formal verification approach and opens the

door to a previously unachievable level of functional
verification quality and productivity.

Fig. 1: OneSpin 360 MV Verification Flow

The combination of these two flows eliminates – in the
terminology of the error classification previously defined –
unstimulated errors and overlooked errors. Furthermore, a
tailor-made completeness methodology complements the
formal verification to minimize the risk of falsely
accepting errors. If a property set, developed according to
this methodology, passes on both flows, the verification is
complete – the only safe criterion to terminate
verification. At this point, a true functional sign-off for the
DUV has been achieved.

Formal verification with completeness analysis is a self
sufficient verification solution that:

• Is independent of simulation.
• Detects all functional errors.
• Implements a precise and objective verification

termination criterion, independent of human and
heuristic factors.

• Improves specification quality by systematically
identifying omissions and errors in the
specification.

• Delivers a high verification productivity of 2 k to
4 k lines of verified RTL code per engineer-
month [6].

• Is complemented by a lean methodology that
affords a high level of design visibility by relating

The content of this article was presented at DVCon 2007 and is posted with DVCon’s permission.

the transaction view of a design to its
implementation.

• Integrates smoothly into existing design and
verification flows.

The completeness analysis shifts the focus from a
single property to the quality of an entire property set.
When completeness analysis identifies a gap in the
property set, and the missing information is not found in
the specification, completeness analysis has identified a
specification gap and provides the opportunity to close it.
Thus the methodology also systematically improves the
quality of the specification.

D. Structure of the Paper
Completeness analysis is described in section II. It is

used in conjunction with a methodology that guides
property development. Once adopted, the verification
methodology can be employed to verify a large variety of
designs. The base of the methodology clarifies how a
design is verified with a set of properties that all belong to
a single completeness plan. Section III describes this base
methodology with specific reference to processors, and
provides an application example using a small processor.

In order to handle larger designs – up to several
hundred thousand lines of RTL code - they must first be
partitioned into multiple sub-designs that can be verified
with one completeness plan. This provides a clear
understanding of the input/output behavior with a
precision that enables the combination of the results for the
sub-designs by manual reasoning. This step is described in
section IV, using the TriCore2 as an example.

II. COMPLETENESS ANALYSIS IN DEPTH
Single properties are used to describe the effect of

single transactions, while a sequence of transactions is
captured by a chain of properties. The automatic
completeness analysis determines whether every possible
input scenario – corresponding to a transaction sequence
of the design – can be covered by a chain of properties that
predicts the value of states and outputs at every point in
time.

Completeness analysis uses properties of an
implicative style, with descriptions of the input scenario
for which the property is developed and the associated
expected behavior. The input scenario consists of a state
and input descriptions. The expected behavior consists of
output and state expressions.

An example of the completeness analysis approach is
shown in Fig. 2. It begins with at a reset state. For every
possible input scenario, it is first checked that a chain of
properties can be built such that the state descriptions of
adjacent properties are consistent. Secondly, the properties
along these chains are analyzed to ensure that they
determine a unique value for every output at every point of
time.

Fig. 2: Chains examined by completeness analysis

Fig. 3 shows examples of gaps that completeness
analysis identifies. In the first example, an input scenario
is identified that is only partially covered by a property
chain. None of the existing properties matches at the end
of the chain, so a portion of the input scenario has not been
covered yet. This gap could allow errors to escape
detection.

Fig. 3: Example gaps identified by completeness analysis

The second example is that of an input scenario for
which a full property chain exists, but where the
properties do not determine a unique value for a given
output(s) at some given point in time. In this case, the gap
could allow erroneous output behavior to be overlooked
and thus escape detection.

Despite these gaps, the design may behave as
intended. However, the completeness analysis reveals that
the property set is not gap-free and thus does not fully
capture the behavior of the DUV. Consequently, the
property set cannot ensure the absence of unintended
behavior.

The completeness plan that is used by the
completeness analysis consists of:

• A property graph that specifies which properties
can succeed each other during the process of
building chains of properties.

• A list of signals that should be treated as inputs
• A list of determination requirements that allows

the engineer to specify which output signals or
expressions must be determined by the property
set, and when.

• A reset property.

The property graph is a high level view that captures
the intentions of the verification plan. If the graph does not
comply with the properties themselves, completeness
analysis flags the discrepancy, enabling a focused
diagnosis.

?
no next property

i
s
o ?

unspecified output description

i
s
o

reset

input

state

output

add subt ldw

The content of this article was presented at DVCon 2007 and is posted with DVCon’s permission.

III. OPERATION PROPERTIES
The presented verification approach is used in

combination with a methodology how to develop
properties for a given design. A single, so-called operation
property expresses and captures a single design
transaction, which is a transition between abstract, high
level design states. This transaction view of the design is
an abstracted view that, being free of implementation
detail, can be easily compared against the natural language
specification.

Properties have an implicative structure consisting of
an “assume” and a “prove” part. The “assume” part of an
operation property describes the abstract, high-level state
where the transition starts and the condition under which
the corresponding operation is executed. The “prove” part
describes the expected output resulting from the operation
and the abstract state where the respective transition ends.

The transaction view of the operation properties is tied
to a specific implementation via a set of mapping functions
that map transaction-level entities – such as abstract, high-
level states and conditions – to implementation-level
entities of the DUV. The same mapping functions are used
in all operation properties; they are easily readable and far
more compact then the RTL code itself.

For instance, the transaction view of a property can
express the expected register-level behavior of an ADD
instruction in a processor design in a few lines. The
mapping function, which describes, for instance, all data
forwarding, consists of a few hundred lines – resulting in
the detailed signal view of the property. The underlying
RTL code comprises several thousand lines. The
transaction view thus affords a high level functional view
that considerably simplifies verification.

A. Operation Properties for Processors
Smaller, single pipelined processors can be examined

with a complete set of operation properties without further
subdivision. For such processors, the transaction view of
the properties primarily captures the architecture
description, which is used to define the contents of the
programmer’s manual with its instruction descriptions.
The obvious classes of operations are therefore related to
the instructions: every operation class describes the
execution of one instruction. There is only one high-level
state from which each instruction execution starts and to
which each returns. The transaction view of the related
property then expresses that:

• A read transaction is made on the instruction bus
for which an abstract program counter provides
the address.

• The instruction read with this transaction is
provided with data from some abstract register
file, a program status word, etc.

• This data is correctly processed according to the
architecture specification involving, if necessary,
read or write transactions on the data bus.

• The result correctly updates the abstract registers.
• The abstract program counter is updated

correctly.

Similar properties are developed for interrupts. This
transaction view captures only the architecture description.
It is therefore independent of – and applicable to – all
architecture implementations.

To transform these generic transaction view properties
into signal view properties, all abstract values mentioned
above are mapped to appropriate expressions about
implementation signals.

This mapping, which is used by all operation
properties, typically involves controllers for multi-cycle
instructions, etc. The proof of the instruction therefore
ensures that these controllers always properly return to
their idle states, and that the execution of an interrupt does
not cause any undesired side-effect on the implementation
state that would disturb the instruction execution later on.

The replacement for the abstract register file –
resulting from the foregoing mapping – is referred to as a
virtual register file. It is a function that tests the signals in
the implementation of successive pipeline stages in order
to determine whether they correctly store results for a
given register file address. It returns the first result that it
finds, as well as the related value of the register file of the
implementation when there is no such value in the
pipeline. Thus, the virtual register file describes how
forwarding provides an instruction at the beginning of a
processor pipeline with appropriate data. This transforms
the verification of forwarding into a by-product of the
proof of the related property.

The replacements for the abstract reads and writes on
the data and instruction busses describe the signal behavior
for the related transactions. The replacement for the
abstract interrupt input defines how interrupts are merged
into the instruction stream.

In general, the expressions that replace the abstract
values in the transaction view involve time shifts to
account for the pipeline structure of the implementation.
The implementation program counter provides the address
of a store instruction several clock cycles before the output
signals to the data bus initiate the store transaction. In
effect, the signal view property accompanies the
instruction while it moves down the pipeline and relates
the proof goals about signals in every pipeline stage to
those points in time when the stage participates in the
execution of the instruction.

The resulting signal view of the property typically
makes no assumptions about other instructions before or
after the one being examined. Therefore, the single formal
proof of this property against the implementation shows

The content of this article was presented at DVCon 2007 and is posted with DVCon’s permission.

that the execution of the current instruction is not impacted
by any precedent instruction. Thus, this proof typically
replaces many separate verification tasks otherwise
necessitated by the consecutive execution of all possible
pairs of instructions.

Completeness analysis is employed to identify and
subsequently close all gaps in the set of properties. If the
completeness of the resulting set of properties is
confirmed, it is ensured that every execution trace of the
processor can be captured by a sequence of signal view
properties (cf. Fig. 4). Their related transaction view
shows that this executes a program according to the
specification. Therefore, the proof of the properties against
the implementation, together with completeness analysis
of the property set, ensures functional equivalence
between the implemented processor and its architecture.

Fig. 4: Sequence of instruction specific properties

One gap often identified by completeness analysis in
relation to this approach is a so-called bubble. This type of
gap describes stages that fall empty because they were
allowed to pass an instruction to the next stage while the
previous stage stalled. The related properties must prove
that such empty stages do not modify the virtual state and
do not access the memory.

B. Application Results
This formal verification methodology with

completeness analysis was applied to a 32 bit Infineon
protocol processor with 40 instructions. The functional
space of this processor is quite large, due to its
configurability and sophisticated multithreading support
with four contexts. Because of this large functional space,
it seemed most expedient to apply functional verification
using the above methodology. Simulation was used where
it was helpful during the design process, but the project
relied solely upon formal verification for functional
verification.

Despite the intricacy of the processor, only 40
operation properties were required to completely describe
its functionality. After 4 engineer-months, the property set
was proven against the implementation and completeness
analysis confirmed the absence of gaps. This terminated
the verification. The extremely high quality delivered by
this verification approach was demonstrated by the fact
that in none of the several system-on-chip (SoC) projects

that integrated this internal IP were further errors detected
during either the ensuing system verification activities or
in field operation.

All errors were removed during the verification phase.
Intricate corner cases, such as the interaction of delay slots
and context switches, were systematically and efficiently
explored, and identified related problems were eliminated
with a partial, targeted redesign.

A simulation-based verification of a previous processor
of comparable size required nearly twice the effort and did
not deliver as high a quality.

C. Quality Assessment

The complete formal verification of the processor
produced a strong correctness statement. As discussed
earlier, the combination of the property checker and
completeness analysis detects all unstimulated and
overlooked errors.

However, the question that remains is to what extent the
verification can avoid falsely accepting errors. To falsely
accept errors, the RTL implementation and the properties
must misinterpret the specified behavior in the same way.
This risk is minimized by the approach described above.
The architecture specification is translated almost verbatim
into the transaction view of properties. The simplicity and
conciseness of the properties – especially in comparison
with exceedingly large testbenches – make them easily
reviewable against the specification. Furthermore,
independent modeling of the implemented behavior by
compact properties reduces the probability of repeated
modeling errors. All other user inputs about internal
circuitry, such as the virtual register file, the replacements
for the abstract program counter, or the abstract state,
cannot lead to falsely accepted errors, because they serve
as induction hypotheses along the chains of properties
under examination by completeness analysis. This means
that all these user inputs are checked by one property
before they are assumed by the next property. If the user
input does not reflect the design logic, the property cannot
be checked against the design, leading to verification
failure. Of course, there might be different user inputs with
which the verification would succeed, but this scenario
cannot mask an error.

This is significantly different from simulation-based
verification, in which the critical internal parts of the
design (such as forwarding) and the specification of
checkers to secure their proper operation are crucial. Such
checkers are specified without the ability to ensure that
they indeed fully capture the design’s proper operation.
This approach thus runs the risk of falsely accepting
incorrect behavior.

IV. TRICORE2 VERIFICATION
TriCore2 is Infineon’s second generation 32-bit

processor. It is a RISC processor with added DSP and

The content of this article was presented at DVCon 2007 and is posted with DVCon’s permission.

microcontroller capabilities, targeted at high-end
embedded applications, including safety-critical
applications. It is superscalar, multi-threaded and has fast
context-switching capabilities. It has two sets of 16 general
purpose registers (GPR) – one for data and one for
addresses.

A. Planning for Complete Formal Module Verification
The formal verification of a complex processor such as

TriCore2 is necessarily a complex task. The effective
execution of such a large formal verification project
requires thorough planning, so that the verification can be
carried out by a team of engineers working in parallel,
leveraging the completeness methodology. This section
describes the verification planning of large projects, using
TriCore2 as an example.

In the planning phase, one or more top level
verification goals are successively decomposed as shown
in figure 5.

 Processor: Equivalence between
Architecture & Implementation

Prefetch: Correct
instruction sequence

 Execution part: Correct
Execution of instructions

Data Management:
Correct operands

LS IP LP

Correct forwarding control Instruction
Sequence Monitoring

…

… …

…

Fig. 5: Verification goal decomposition

This leads to the definition of sets of parallel and serial
tasks. Some tasks – serial tasks – can be more easily
executed if other tasks have been previously executed,
because the earlier tasks clarify issues required by later
tasks. Such dependencies must be identified. Other tasks –
parallel tasks – are independent of each other, and can be
executed by different team members with little co-
ordination. Effort estimates are then calculated for each
task. Finally, a graph of tasks and their dependencies is
created. Using this graph, the parallelism inherent in the
verification project is determined, so that the tasks can be
efficiently distributed among a team of verification
engineers. This effort estimation determines the project
schedule. Project progress is reported on the base of the
tasks and their schedule.

An important observation from the verification plans
created according to this approach is that very often some

relatively small number of top level verification goals
suffices to start the decomposition of figure 5. For
TriCore2, the overall objective is the same as for the
protocol processor previously discussed, namely, the
equivalence between the architecture description and
implementation.

The decomposition of the top level objective proceeds
in stages. In the first stage, the functions of fetching and
execution are identified, and the top level requirement
partitioned into the proofs i) that the instructions are
fetched from the program memory and sent to the
pipelines in the correct order and ii) that the instructions
received by the pipelines are executed according to the
specification.

The verification of both fetching and execution
functions is then further decomposed. The execution of a
given instruction is proven by i) the provision of the
operands and ii) the execution within the target pipeline to
produce a modification of the architectural state,
calculation of the result of an arithmetic instruction,
loading of data from memory, etc.

The correct provision of an instruction with operands is
decomposed into the proofs that i) the instructions moving
in the pipelines correctly signal when they provide a result
and when the result is available (forwarding control); ii)
the instructions are stalled when their source operands are
not available (data dependency stalling), and iii) the
implementation keeps track of the correct sequence of the
instructions (instruction sequence monitoring) − a non-
trivial task because instructions are allowed to move at
different speeds in the pipelines.

Assuming that an instruction receives the correct
source operands, the correct execution in each pipeline is
verified separately for each of the three Tricore2 pipelines,
the Load/Store pipeline (LS), the Integer Pipeline (IP) and
the Loop Pipeline (LP). The verification of the LS pipeline
is further decomposed for classes of instructions, for
instance, for those that access the memory management
unit (MMU).

The last step in the decomposition process partitions
some proof goals into manageable tasks by the
introduction of temporary restrictions. For example, the
verification of the instruction sequence monitoring in the
Tricore2 was first defined on the assumption that there was
no cancellation; a second phase allowed for cancellations
due to wrong speculation, but not due to exceptions, and
the final phases verified the functionality without
restrictions. This stepwise removal of restrictions enables
the verification engineer to gradually build knowledge of
the full design functionality and to finer track verification
progress.

The final project plan of TriCore2 allowed three
verification engineers to work on the project in parallel,
condensing 8 engineer-years of effort into less than 3 years
real time. Most tasks are executed according to the
methodology for designs that can be verified with one

The content of this article was presented at DVCon 2007 and is posted with DVCon’s permission.

verification plan. This effort amounted to around 90% of
the total verification effort. The results were then analyzed
by informal reasoning to deduce the proof goal for the next
level of decomposition. This combination of results
followed the reverse order of the decomposition, all the
way up to the top level verification objective of
equivalence between the instruction set architecture (ISA)
and the RTL implementation.

B. Quality Considerations
This decomposition procedure highlights intermediate

proof goals, similar to the verification objectives of
verification plans for simulation. However, for complete
formal verification, these proof goals are typically
expressed with some level of freedom to comprehend the
actual results in the course of verification. This level of
freedom does not impact the final verification quality
because, ultimately, these intermediate goals must be
proven if they are used in other proof tasks. Therefore,
intermediate proof goals have no impact on the quality that
the verification will finally produce. This is different from
verification plans for simulation, where proof goals about
internal behavior are identified to provide better visibility
into the design and thus to increase the number of detected
errors.

Verification planning for complete formal verification
has a major impact on schedule reliability. If the
decomposition into tasks does not reflect the architecture
of the design, the combination of the partitioned tasks may
fail, and the project plan would have to be re-worked.

The manual reasoning involved in combining the
results of verification tasks starts from precise
descriptions. It is therefore possible to exploit the rigor of
mathematical proof. To minimize the impact of human
fallibility during this step, intermediate results can be
packaged into macros of the property language which are
proven in one task and assumed in the other.

C. Example Verification Task
As an example, we consider the data management

tasks for the integer pipeline. This involves proving
properties for the correct behavior of forwarding control
signals as well as combining the related results with the
results of other tasks to ensure the proper delivery of
operands.

The inputs to the forwarding control functionality are
the opcode, stall and cancel signals. The forwarding
management signals are for each pipeline stage:

• VPTR: set if the instruction produces a result.
• VRES: set if the result of the instruction is valid

in the pipeline stage.
• VPSW: set if the instruction modifies the status

word.

• Signals carrying result and destination register
address.

The IP instructions are grouped into classes with the
same expected behavior of the forwarding management
signals. For example, the class early_vres groups the
instructions that produce a result in the first execution
stage ex1. A property is written for each class of
instructions. The property describes the expected behavior
of the VPTR, VRES, VPSW result and the destination
address signals from the point in time at which the
instruction is ready to leave the decode stage, dec, to the
time it leaves the pipeline. For example, the early_vres
property describes how:

• VPTRdec and VPSWdec are set when the
instruction is in the decode stage, while VRESdec
is not set.

• VPTRex1, VPSWex1, VRESex1 are set when the
instruction moves into the first execution stage
ex1 and remain set until the ex1 stall signal is
removed.

• VPTRex2, VPSWex2, VRESex2, VPTRwb, VPSWwb,
VRESwb are set when the instruction moves into
the write-back stage wb.

• The destination register address propagates
correctly through all stages.

• The result signal propagates from the point of
time onwards where the VRESex1 signal becomes
true.

Results of the forwarding control tasks (as sketched
above) were combined with the results of the data
dependency stalling and instruction sequence monitoring
tasks to show that the instructions are provided with the
correct operands. The instruction sequence monitoring task
takes the application of new instructions in the three
pipelines as inputs and proves the correct setting of the
instruction tags, so that the sequencing of the instructions
in the pipeline can be established. The data dependency
stalling task takes the attributes of the verification
operands as inputs, proven by the forwarding control task,
and the instruction tags, proven by the instruction
sequence monitoring, and proves that an instruction stalls
in the decode stage until its source operands are ready for
forwarding.

D. Example Error
During a similar verification for the load store pipeline,

an error was found that is one example of the type of
problems that complete module verification detects.

The error occurs with an instruction sequence similar
to the following:

(1) LOAD D2

(2) ADD D0=D2+0

(3) ADD D6=D4+0

The content of this article was presented at DVCon 2007 and is posted with DVCon’s permission.

(4) ADD D8=D2+0

(5) STORE D8

Instruction (5) must be misaligned, that is, taking two
accesses to complete. Further on, an external write to one
of the core special function registers needs to be executed
during the second access of instruction (5). Then the old
data in register D8 (i.e. before instruction (4) writes to D8)
is stored, contrary to the expected behavior, where the
result of (4) is to be stored. This clearly is an obscure
corner case error highly unlikely to be triggered in
simulation – which is not to say that it is highly unlikely to
occur in real life. Since it depends upon a particular code
sequence, it has a software workaround. Therefore, it is not
classified as critical, but it is crucial to find these types of
error during verification to avoid failure in later safety-
critical application. Its correction is supported by formal
verification, because the set of instruction sequences that
make the error occur could be precisely identified.

E. Error Statistics
The verification of TriCore2 combines formal and

simulation-based approaches. The simulation-based
dynamic verification of TriCore2 is detailed in [2].
Essentially, it consists of a large suite of assembly tests,
some hand-written, some Perl-generated and some
generated using a Specman Instruction Stream Generator
(ISG). The ISG is capable of generating both highly
directed and highly random tests. The tests can be run on a
configurable, directed testbench, or on a constrained-
random testbench. Configuration options include where
the test is placed in memory, whether the MMU or
external coprocessor is enabled, etc. The directed
testbench is designed to generate external bus traffic,
interrupts and idle requests at critical times. The random
testbench generates these stimuli randomly, exploring
unforeseen problem areas.

Checking is carried out on several levels. Many tests
are self-checking, jumping to fail for unexpected results.
Beyond this, an instruction-by-instruction comparison of
the traces produced by the design is compared with that
produced by the golden model. A comparison of the
memory contents is made at the end of the test and OVL
assertions are embedded in the design. Sign-off criteria
included both structural and functional coverage targets
(e.g. 100% statement and branch coverage, 100% of
defined functional coverage hit). This involved
considerable effort in terms of engineering time, license
use, and use of computer resources.

Errors found during TriCore2 verification were tracked
and information about the methodology that detected the
error and its severity was recorded. Errors were not tracked
until the directed test suite (of around 10,000 tests) had a
pass rate of over 99% in the default configuration, thus
ensuring a base level of design quality. After this base
level of quality was achieved, the formal verification of
TriCore2 found 89 errors (out of a total of 259 errors

reported by all methodologies) in the design and 67 errors
in the specifications.

Since the formal verification was run concurrently with
the dynamic verification, some of the errors found by
formal verification might also have been found by the
dynamic verification. However, analysis of the nature of
the errors suggests that this would apply to at most 40 of
the design errors. Conversely, once the formal verification
of an area of TriCore2 was complete, no other verification
methodology found further errors in that area. Of the 50
design errors that would not have been found by
simulation, several were classified as critical (meaning
unavoidable lock-up or data corruption).

The specification errors were found during the
formalization of the architecture and when the
implemented instruction execution was verified against the
formalized architecture description. Its number might
show how precisely the architecture can be formalized.
The verification discovered differences that were corrected
by adapting the specification.

V. CONCLUSION
Existing verification techniques, both static and

dynamic, can leave errors in the design undetected. The
complete formal verification methodology presented in
this paper combines the formal proof of individual
properties, the automatic formal proof that the set of
properties is a complete description of the design
functionality, and the transaction-based style of the
properties to prove that the design is error free. Two
examples of the application of the methodology were
described, the complete verification of a single-pipeline
protocol processor and of the superscalar Tricore2
processor. The verification of the Tricore2 also details how
complex verification tasks are managed and decomposed,
showing that the methodology is applicable to large IPs
and is suitable for execution by verification teams.
[1] Aycinena: Verification Test Plan: The Book : EDA Café:
http://www10.edacafe.com/nbc/articles/view_weekly.php?articleid=307
775
[2] Bruno, Blackmore: Verifying the Tricore2 Multithreaded
Microprocessor, Design Con 2006
[3] Foster, Krolnik, Lacey: Assertion Based Design: Springer 2003
[4] Murphy, Kurshan, Albin, Wolfsthal, Geist, Sawada, Nguyen, Fix,
Gorman, Edwards, Yeh, Joyner: Research Needs in Verification, April
2005 - www.src.org/fr/s200502_needs.pdf
[5] Shimizu, Gupta, Koyama, Omizo, Abdulhafiz, McConville,
Swanson: Verification of the Cell Broadband EngineTM Processor: DAC
2006
[6] Bormann, Blank, Winkelmann: Technical and Managerial Data
About Property Checking With Complete Functional Coverage: Euro
DesignCon 2005

