
38 September 2019 www.eenewseurope.com News @eeNewsEurope

INTERCONNECTSDESIGN & PRODUCTS

Automated connectivity checking
with formal verification
Tom Anderson

Formal verification traditionally has been regarded as an
advanced technique for experts to thoroughly verify indi-
vidual blocks of logic, or perhaps small clusters of blocks.

The appeal of formal techniques is the exhaustive analysis of all
possible behavior for the design being verified. This stands in
sharp contrast to simulation, which exercises only a tiny fraction
of possible behavior by running specific tests. If no test triggers
a design bug, the bug will not be found. If the bug is triggered
but no change in results is observed, the bug will not be found.
Given a sufficiently robust set of properties to describe intended
behavior, formal tools can not only find all bugs but also prove
that there are no more bugs to be found.

Today, many more users
can take advantage of the
power of formal verification,
and most of them are not
experts. There are several rea-
sons why formal adoption has
grown so much. The broad
deployment of standardized
formats, most notably the
SystemVerilog Assertions
(SVA) subset, has reduced
the level of expertise needed
to write formal properties.
Model-based mutation cover-
age can identify those parts
of the design not covered by
assertions, providing valuable guidance to users. Formal tools
now have more automation and simulation-like debug features,
making them easier to use. Regular breakthroughs in the power
and performance of formal algorithms enable use on large
blocks and clusters unimaginable just a few years ago.

However, the primary reason for the wider use of formal
verification is that the majority of users are running applications
(“apps”) targeted for specific verification challenges. Apps typi-
cally generate most, or all, of the properties needed for formal
analysis, with algorithms and tool features tuned for the target
application. The result is a “pushbutton” solution requiring mini-
mal training even for users with no formal experience. Further,
apps are so efficient that many are run at the full-chip level even
for very large system-on-chip (SoC) designs. The goal remains
finding all bugs and proving that all bugs have been found, but
only those bugs related to the specific challenge being ad-
dressed.

SoC connectivity challenges
Connectivity checking is one of the most widely used applica-
tion for formal technology. The purpose of this verification task
is deceptively simple to state: Ensure the proper interconnec-
tions among design blocks and I/O cells. This sounds easy
enough, but in fact it is a significant challenge. A modern SoC
contains complex subsystems built with thousands of instances

of highly configurable modules and IP blocks. Programmable
elements provide flexibility and adaptability, while multiplexed
I/O pads allow user control of which protocols run on which
pins. There may be hundreds of thousands of connecting paths,
every one of them important for proper functional operation of
the chip.

Signals that are supposed to be connected may go through
multiple blocks and multiple levels of hierarchy, as shown in
figure 1. Inverters may exist along the paths, so it is critical to
track polarity. Paths may also include state elements such as
registers and flip-flops, resulting in multi-cycle delays between
starting and ending points. Some global signals such as clocks,

resets, and scan enables
are routed to thousands or
millions of state elements,
and the correctness of these
connections should also be
verified. All these reasons,
plus the sheer number of
connections to be checked,
render connectivity verifica-
tion by inspection completely
impractical.

Simulation or emulation of
connectivity is more practical,
but inherently incomplete.
A test suite to cover every

path required would be tedious to write, difficult to maintain as
the design evolves, and time-consuming to run. Debug when
errors are detected is not trivial; bug symptoms must be traced
back to find the incorrect or missing connection. Of course,
neither simulation nor emulation can provide any sort of proof of
correctness, no matter how good the test suite may be. This is
precisely why connectivity checking has become such a widely
used application for formal technology. A formal tool can poten-
tially find all the connection errors and prove that connectivity is
complete after all bugs have been fixed.

Traditional formal connectivity checking
As previously noted, formal verification requires properties
against which the design is checked. It is not hard to imagine
writing a series of properties using SVA to specify the signals
that must be connected, and this might be a tractable approach
for small designs. Writing thousands of such properties would
be daunting, and this is a key area where a connectivity check-
ing formal app can help. The structure of connectivity properties
is quite regular, so they can be generated automatically given
a specification of intended connectivity. This is most often pro-
vided to the formal tool in the form of a traditional spreadsheet,
as shown in figure 2.

Clearly, filling out this spreadsheet is much easier for us-
ers than writing assertions. The fields specify the source and
destination for each connection path, the number of cycles of
delay along the path, the condition under which the path should
be enabled, and the relevant clock. The enabling condition is

Tom Anderson is technical marketing consultant at OneSpin
Solutions - www.onespin.com

Fig. 1: Connectivity source and destination may be separated by
levels of hierarchy.

 39 www.eenewseurope.com eeNews Europe NewsSeptember 2019

INTERCONNECTS

especially critical for paths containing multiplexors, such as I/O
pads supporting multiple possible connections under different
conditions. Given the information in the spreadsheet, a formal
tool can generate all properties required with no manual speci-
fication. A combination of structural analysis and formal proof
engines finds all bugs in the design (or errors in the spread-
sheet) and then proves full conformance to the specification.

Like several other formal apps, connectivity checking is
routinely run on full-chip designs. This is necessary since the
full range of connections to be verified is visible only at the top
level. Formal tools have capacity limitations, but connectivity
checking is possible on large chips because only a small por-
tion of the design is relevant to the problem at hand. Unrelated
logic is trimmed away while building the formal model to speed
analysis. However, today’s very large heterogeneous computing

platforms and similar SoCs stress
the capacity of traditional formal
tools. Further, filling out a spread-
sheet with hundreds of thousands
of entries rather than thousands
is not realistic. Clearly, traditional
formal connectivity checking must
evolve.

The connectivity XL approach
A new methodology for connectivity verification, dubbed Con-
nectivity XL by OneSpin Solutions, addresses the challenges
of massive SoC designs. One of the key innovations is the
elevation of connectivity intent specification to an abstract level.
As shown in Figure 3, a spreadsheet remains the vehicle, but
wildcards make the specification much more concise.

co-located even t

Connecting Global Competence

Your visions.
Our connections.

November 12–15, 2019

productronica 2019. The world’s
leading trade fair for electronics
development and production.
Accelerating Your Network.

prod19-advert_Network_190x136_eeNewsEurope_E.indd 1 27.08.19 15:36

Fig. 2: Connectivity intent can be specified in a spreadsheet.

Fig. 3: Abstract connectivity specification is concise.

40 September 2019 www.eenewseurope.com News @eeNewsEurope

INTERCONNECTSDESIGN & PRODUCTS

It is common for blocks to be instantiated multiple times
with regular naming, so wildcards can compress the required
number of spreadsheet
lines significantly. This can
reduce the time to specify
intended connectivity from
months to days.

A formal tool can read
this abstract specification,
compile it together with
the design, and expand
the wildcards to produce
a traditional connectiv-
ity spreadsheet with a
single connection per line.
However, this specifica-
tion may have hundreds
of thousands of lines, so a
traditional connectivity checking tool would likely have capac-
ity issues. Ongoing improvements in the underlying formal
algorithms of Connectivity XL support ever-longer connectivity
specifications for ever-larger SoC designs. Machine learning
based on many years of formal experience is used to select the
best proof engine for the job.

Automatic abstractions reduce the formal model to the
minimal require logic, speeding up runtimes and reducing
memory usage. Another innovation of Conne ctivity XL is unify-
ing structural and formal analysis for maximum efficacy. As part
of generating detailed specifications, this analysis automatically
detects delays and inverters in the connection paths and infers
multiplexing conditions. In summary, Connectivity XL provides
a more automated flow than traditional approaches, handles
larger designs, and produces complete proofs even for the most
complex chips.

Real-world verification results
At the recent Design and Verification Conference (DVCon) in
China, Xilinx and OneSpin presented a case study of the One-
Spin Connectivity XL App applied to a multi-billion-gate SoC.
Using 7 nm technology, this chip contained 60 million instances
of 35 thousand modules, 90 million flip-flops, and 80 thousand
finite state machines. As one of the largest designs in the world,
it stressed many tools in the design and verification flows. This
was certainly true for connectivity checking since there were in

excess of one million connections to specify, maintain across
design iterations, and verify.

The verification team
tried several traditional
connectivity apps, includ-
ing OneSpin’s, and all
failed to scale to this large
chip. The effort to specify
and maintain more than a
million connections was
unacceptable. Formal tool
runtimes were excessive,
and too often produced
inconclusive proof re-
sults. With a tight design
schedule, quality could
not be compromised, and
exhaustive verification was

deemed critical. Connectivity XL proved to be up to the task.
The abstract specification format reduced spreadsheet size
by a factor of more than one hundred while making it easier to
maintain the connection list.

Connectivity XL found several corner-case bugs that would
have been very hard to detect using any other tool or method.
The errors included incorrect block integration, multiple drivers
enabled on paths, and re-convergent paths. The debug infor-
mation provided enabled easy root-causing, even on paths with
more then two thousand signals between source and destina-
tion. Once these issues were resolved, all one-million-plus
connections were proven within a matter of days using multiple
jobs running in parallel. There were no inconclusive results for
any connections.

Conclusion
Ever-increasing chip size and complexity is making formal apps
even more valuable, especially connectivity checking. There
is no chance that simulation, emulation, or manual techniques
will suffice. Even traditional formal tools do not scale. The
Connectivity XL approach is the next generation of connectiv-
ity checking solution, with both greater capacity and improved
automation. It has been validated on a real-world multi-billion-
gate SoC design with more than a million connections. Designs
will continue to grow but this new category of formal tools is
positioned to provide a viable solution for years to come.

Fig. 4: A connectivity case study was presented at DVCon China 2019.

Commercial efforts around electronic textiles have been
prominent for at least 25 years, starting with early
patents and then early products throughout the 1990s.

Electronic components including batteries, transistors/micro-
processors, antennae for communication and so on, have all
been demonstrated in a textile format, and examples of these
are included in IDTechEx’ latest research report “E-Textiles
2019-2029: Technologies, Markets and Players”.

The majority of these demonstrations are a one-off proof
of concept, and certainly not commercially mature enough for
wider deployment. Therefore, as nearly all e-textile products will
need these components, commercial options today typically
include traditional rechargeable batteries and housed PCBs

containing the other essential electronic components. The result
is that these components need to be housed somewhere in the
e-textile product, and hence it is typically possible to “find the
box” which contains these components.

This electronic box can potentially be a good solution to the
challenge of washing. Typically, e-textile products can be sold
with multiple versions of the garment element and a single box
to fit all of them. Then the box can be removed for washing and
replaced onto copies of the garment element, just as would
be the case for a smartwatch or chest strap. This requires a
replaceable, reliable, durable and fool-proof connector op-
tion, for which traditional snap fasteners or magnetic versions
are typically preferred. As our report shows, the industry has

Connecting with e-textiles: Find the box!
By James Hayward

