
Feature: Embedded

24 June 2021 www.electronicsworld.co.uk

Verification
requirements for
SystemC/C++
designs
By Vlada Kalinic, SystemC Verification
Product Manager, OneSpin Solutions

A lthough SystemC/C++ coding styles have been
used for many years, specific models have
recently emerged to drive common design
flows across engineering teams. These include
abstract algorithmic design code as input
for high-level synthesis (HLS) tools, virtual

platform models for early software test, configurable intellectual
property (IP) blocks, and many more.

HLS, which transforms “mostly untimed” abstract SystemC/
C++ design representations to fully-timed register-transfer-level
(RTL) design blocks, is in use at many large semiconductor and

Figure 1: SystemC/C++ high-level design flow

electronic systems companies. These tools are particularly popular
as a method to rapidly generate design components with varying
microarchitectures, whilst rapidly and effectively optimising
algorithm-processing data paths. Their use on control logic, as
well as components with more detailed timing in general, is also
becoming more widespread.

Verification of System C/C++
The verification of SystemC/C++ designs is largely performed
by compiling the design representation using a standard software
compiler, such as GCC, and debugging the code in a similar
fashion to software designs. The Open SystemC International
(OSCI) SystemC/C++ class library, now standardised as IEEE
1666-2011, introduced a functionality that provides a more RTL-
simulation-like user experience. Still, there are many issues that
make the verification of SystemC code a complex, arduous task
– including debug runtime performance and test complexity. The
availability of formal techniques at this level has been sparse.

A common SystemC/C++ HLS flow makes use of algorithmic
descriptions often using only C or C++ code. These descriptions
are tested to ensure that the algorithm itself operates correctly. The
SystemC class library functions are applied to provide minimal
hardware detail, such as basic timing, reset functionality, etc., as
required by the HLS tools. The synthesis tool produces RTL code,
which is then applied to a more traditional design-refinement flow
and verification process.

The verification of the design is split between the SystemC and
RTL levels. It is clear that engineers would prefer to verify and
debug the original SystemC designs, and only check for functional
equivalence post-synthesis, similar to traditional RTL development
processes. However, the lack of effective SystemC/C++ design
verification environments has driven engineers to more traditional
HDL verification. As they raise the abstraction level of their design
approaches, it becomes more natural to also raise the level of
verification. At the pre-HLS algorithmic level, verifying the design
directly against its specification with less concern for coding detail

Feature: Embedded

 www.electronicsworld.co.uk June 2021 25

is a requirement. Functional specifications may be represented
easily with assertions and, as such, the use of formal techniques
is a natural choice since they allow assertions to be rigorously
tested against the design. New control-intensive algorithms, now
being coded in SystemC, are particularly hard to verify using just
simulation.

Going formal
There is a broad range of formal techniques that can be applied to
design components coded in C++ or SystemC, with varying levels
of timing and code abstraction. Such solutions provide a range of
automated structural, safety and activation checks to be applied to
designs without having to manually create assertions – particularly
useful for sign-off of the design code prior to high-level synthesis.

Fully-functional assertion-based formal verification tools allow
for comprehensive assertions to be tested against SystemC/C++
design code. These assertions may be written using the simple C
assert statements, or full SystemVerilog Assertions (SVA) with
all the temporal concurrent constructs included. The ability to
leverage temporal assertions on SystemC/C++ designs is a unique
capability of this technology.

Multiple proof engines can leverage a range of standard and
proprietary algorithms to provide in-depth code analysis, which
consistently exhibits a high degree of convergence compared to
other solutions, coupled with rapid, high-capacity operation. The
platform can process a range of languages and includes capabilities
for easy set-up and usage. A powerful debug environment provides
a clear path to quickly track down design problems or tests.

Formal techniques’ flexibility allows them to be applied to a
range of problems, and these apply equally well to SystemC/C++
designs. Tools may be used in a highly-interactive mode to quickly
look at how a design is operating in a “what-if ” style. They may
form the cornerstone of a full metric-driven verification solution,
and an effective validation mechanism for IP integration on SoC
platforms.

Automated formal SystemC/C++ design evaluation
The full automated functionality of formal verification may
also be leveraged on SystemC/C++ hardware design code.
Eliminating bugs as early as possible in the design process can
save many engineering hours downstream, and this is even more
valuable when the design process starts at the microarchitecture
abstraction level.

Many designers have moved
to SystemC/C++ to raise the
abstraction level and take
advantage of high-level synthesis

Figure 2: Use of SVA with a SystemC/C++ design

A range of automated checks that use the full power of the
formal engines can be implemented to provide in-depth static
analysis of the design code, but without having to manually write
assertions. Going beyond traditional linting tools (automated
checking of your source code for programmatic and stylistic
errors), this design inspection technology looks for potential
bugs by analysing operational scenarios based on the code
construction.

Safety checks such as out-of-bounds access on an array or dead
code (unreachable) or deadlock activation checks and structural
analysis, including classic mismatches between simulation
and synthesis operation, are all available. In addition, there are
checks particularly applicable to SystemC code. For example, it is
important to check which registers have been explicitly initialised:
SystemC variables are automatically initialised in simulation,
but HLS tools ignore these initialisations, leading to simulation-
synthesis mismatches that are hard to debug. Formal techniques
also check to see whether uninitialised registers, undefined
operations, or multiple drivers can propagate X (unknown) values
in the design.

There is no notion of unknown values in SystemC simulation,
so formal analysis is needed to find propagation issues. SystemC
also lacks non-blocking assignments, leading to race conditions
(the only concurrent problem that can happen when two threads

Feature: Embedded

26 June 2021 www.electronicsworld.co.uk

manipulate the same state, or value, in the same time lapse) and
mismatches between sequential simulation semantics and parallel
operation in hardware.

Many of the issues caught by DV-Inspect are not checked by
simulation or HLS. These include unintended behaviour due to
issues with specific data types, such as for fixed-point arithmetic,
as well as concurrency-related issues such as race condition
evaluation. Formal analysis provides a valuable pre-synthesis
signoff to save overall development time and resources.

Sequential assertion-based SystemC/C++ verification
A full assertion-based verification solution for SystemC and other
SystemC/C++ designs can be applied. Accepting the majority of
SystemC functions, the formal solution allows assertions to be
tested against a range of code abstractions, from transaction level
models (TLMs) through detailed RTL and right down to netlists,
and from almost untimed to full cycle accurate representations.

Both simple ANSI C assertions and fully temporal concurrent
SystemVerilog assertions (SVA) may be used with the SystemC/
C++ designs. This assertion description flexibility allows existing
assertions for other designs to be reused or leveraged as templates,
and reduces the learning overhead associated with a new format.
This also enables consistent pre- and post-synthesis flow where
the same assertions, if written with the flow in mind, may be
reused on SystemC/C++ golden models and their RTL synthesised
derivatives. In addition, verification intellectual property (VIP)

assertion sets created for RTL environments, for example a
bus protocol verifier, may be reused on SystemC/C++ code.
This unique formal capability allows sequential assertions,
which can be used to describe specification elements, expected
design characteristics and fault conditions to be tested
against abstract code. This allows engineers to work at the
SystemC/C++ level on their golden designs to ensure that
they meet their specifications prior to synthesis. It enables a
comprehensive formal solution at a level where specifications
may be played against different microarchitecture options.
Finally, it eliminates the indirection of debugging a SystemC/
C++ design using the post-synthesised RTL code.

Formal techniques
Formal techniques are well established as a key part of
functional verification for hardware designs. Many designers
have moved to SystemC/C++ to raise the abstraction level and
take advantage of high-level synthesis. This approach speeds
up the hardware design process but, for a corresponding
reduction in verification time, the focus must be on the
SystemC/C++ source code and not the post-HLS RTL design.
The OneSpin DV solution for SystemC/C++ satisfies this
need, providing both automated design inspection and full
assertion-based verification for high-level designs. HLS
users can take full advantage of the most advanced formal
verification methods.

Figure 3: Deadlock checks in
SystemC/C++ code

Figure 4: Wide
range of checks for
SystemC/C++ code

	EW-JUN21-PG01
	EW-JUN21-PG02
	EW-JUN21-PG03
	EW-JUN21-PG04
	EW-JUN21-PG05
	EW-JUN21-PG06
	EW-JUN21-PG07
	EW-JUN21-PG08
	EW-JUN21-PG09
	EW-JUN21-PG10
	EW-JUN21-PG11
	EW-JUN21-PG12
	EW-JUN21-PG13
	EW-JUN21-PG14
	EW-JUN21-PG15
	EW-JUN21-PG16
	EW-JUN21-PG17
	EW-JUN21-PG18
	EW-JUN21-PG19
	EW-JUN21-PG20
	EW-JUN21-PG21
	EW-JUN21-PG22
	EW-JUN21-PG23
	EW-JUN21-PG24
	EW-JUN21-PG25
	EW-JUN21-PG26
	EW-JUN21-PG27
	EW-JUN21-PG28
	EW-JUN21-PG29
	EW-JUN21-PG30
	EW-JUN21-PG31
	EW-JUN21-PG32
	EW-JUN21-PG33
	EW-JUN21-PG34
	EW-JUN21-PG35
	EW-JUN21-PG36
	EW-JUN21-PG37
	EW-JUN21-PG38
	EW-JUN21-PG39
	EW-JUN21-PG40
	EW-JUN21-PG41
	EW-JUN21-PG42
	EW-JUN21-PG43
	EW-JUN21-PG44

