___DEV

LOPMENT SC

==

Risc-V design requirements

I To increase understanding of how verification and the associated tools and techniques should be applied to

achieve complete verification, Rob van Blommestein offers some advice

It is safe to say that Risc-V is enjoying
a surge in popularity among the design
community. Not only does the open
source nature make it a cost-effective
alternative to Cisc, but the instruction
set architecture (ISA) is designed for
flexibility.

It can map to many implementations
and micro-architectures and contains
numerous optional instructions
and features. It also allows for the
development of custom instructions and
features, and supports a wide range of
end applications.

However, with this flexibility come
verification challenges and questions
about how best to tackle them.

A question of trust

There are a number of requirements that
must be met when developing and using
Risc-V cores. One of the biggest is that
of trust in the IP implementation.

Have all the features been
implemented?

Have they been implemented
correctly?

Are there any bugs that are hiding in
the implementation?

Are there any Trojans inside this IP?

Simulation has had a difficult time
answering these questions, and this
has led to an increasing use of formal
verification (Formal) to answer these
questions. The exhaustive nature of
Formal makes it an ideal choice to
assure confidence in the core.

To provide a deeper understanding
of how to effectively verify Risc-V, we
asked the community for their specific
questions and have provided some
answers.

Is there a special Formal technique for
Risc-V only?

There isn’t anything specific to
Risc-V. However, you need to have
a fairly detailed understanding of
the Risc-V ISA in order to create the
correct set of properties and to make

SVAs

Figure 1: One method of property checking is to use reusable SystemVerilog assertions (SVAs)

to achieve an unbounded proof

sure the property set is complete. A
Formal technique that should be used
to create the properties is interval
property checking. These are reusable
SystemVerilog assertions (SVAs) to
achieve an unbounded proof (Figure I).

There are several important aspects
of these assertions. They do not start
from reset but from a generic valid
state. There is a limited number of
cycles to reach the generic valid state.
It is crucial to de-couple the ISA
specification requirements from the
micro-architectural details.

These operational System Verilog
assertions enable high level, non
overlapping assertions that capture end
to end transactions and requirements in
a concise, elegant way.

They capture functional requirements
in a Formal and simulation executable
format and capture entire circuit
transactions in a concise and elegant
way, similar to timing diagrams. They
also achieve 100% functional coverage
with high level, easy-to-review
assertions.

Other advantages are that they
adopt a consistent assertion style
that is applicable to a wide range of
applications and able to deliver optimal

12 August 2020 | www.electronicsweekly.com

performances for both simulators and
Formal tools.

Finally, they cleanly separate
implementation-specific supporting
verification code from reusable
specification-level code.

Many properties will need to be
constructed to fully verify the Risc-V
design. This could take many months
to complete and will require detailed
knowledge of the Formal tool in order
to reach full convergence. There
are solutions on the market that can
dramatically reduce this time.

Since Risc-V is a huge design; how can
it be verified and what are the initial
assumptions?
It is difficult to answer what the
initial assumptions should be as these
should vary according to the specific
design. However, when tackling the
verification of a huge design like a
Risc-V core, the best way is to ‘divide
and conquer’.

Focusing on the core should be
the first step. This includes making
sure the protocols are not violated,
verifying the caches separately to
isolate associated complexities,
looking at the interconnects between

different blocks and units and
performing x-propagation.

It’s important to note that
x-propagation should be done at the
block and unit level and not on the
entire core during this step. Another
technique is to use “assume guarantee”
to validate the interfaces.

It is worth mentioning that these
methods are not specific to Risc-V
and can be applied to any processor
verification. However, the complexities
of Risc-V may mean that it takes many
months to perform a complete and
exhaustive verification of the core.

There are solutions available,
designed with these complexities in
mind, to generate reusable assertion
IP and achieve full verification in a
fraction of the time.

What are the benefits of using formal
verification instead of simulation for
companies wanting to certify a Risc-V
implementation against safety-critical
standards?

One of the main benefits that

Formal has over simulation is the
exhaustiveness that it provides. This
does not just apply to Risc-V, but to any
processor.

What is key is that as complexity
increases, there is a point where
simulation is no longer enough. For
today’s designs, that complexity
threshold is rather low. As it relates to
Risc-V, exhaustive verification can be
achieved with the correct knowledge of
the ISA, the complete property set, and
the right formal engines.

Formal proofs are much more
powerful than simply passing a
traditional compliance test suite running
in simulation. Simulation, no matter
how extensive, can exercise only an
infinitesimal portion of possible design
behaviour. Even the most carefully
crafted compliance suite leaves gaps in
design coverage. There are countless
cases where specific operand values



or corner-case conditions are untested,
and some of these may trigger hidden
design bugs.

Arithmetic operations are especially
subject to this problem. A single
mis-typed array index in an RTL
description can yield a design where
unexpected and non-intuitive operands
produce the wrong answer.

The very nature of simulation, as
well as acceleration and emulation,
makes it impossible to try every
possible case. Formal tools do not
iterate through test cases; they
mathematically analyse a design in its
entirety.

‘When it comes to safety, knowing
if vulnerabilities can be avoided, what
and where any and all bugs exist, and
if all paths are correct and are vital.
Simulation has a difficult time providing
a complete picture. There is a point of
diminishing returns with simulation runs,
since continued runs fail to find all the
answers. Formal is the only technology
that can conclusively prove the absence
of something (such as a bug).

There are safety standards that
require the use of specific verification
techniques, as well as a well-defined,
thorough verification process. That
means verification has to be much
more rigorous. If safety is a concern,
then simulation alone is not sufficient
and Formal must be a part of the
verification plan.

I've heard that the Risc-V core is written in
Chisel. How does Formal deal with that?
There are a few open source cores, like
those from Berkeley, that are written in
Chisel. However, most Formal solutions
do not directly support this language.

There are, however, many methods
that can easily convert Chisel to
Verilog, which is widely supported by
Formal tools on the market. There are,
of course, many Risc-V cores that are
directly written in Verilog so converting
is not an issue for those cores.

Do | need to verify that the Risc-V core
received from the provider is bug-free?
The short answer is yes. The core
provider should run a complete integrity
verification of the core and provide
documentation of the results. For
confidence in the integrity of the core,
Formal verification should be a part of

DEVELOPMENT SOFTWARE

RISC-V Core RTL

h 4

b 4

Design Info Extract

J } OneSpin 360 Formal
Verification Engine

V- N

IP Configuration:
Architecture: RV64l1, Exts: M, F
Parameters: Pipeline depth 6,
I/O-Mapping, Register
Mapping, User Extensions

RISC-V Modelling Layer
Implementation Specific

Properties

4

OneSpin Processor Formal Verification Flow

ISA Formalization in SV

y N
Re-Usable RISC-V VIP

Figure 2: The OneSpin processor verification flow

Understanding
how to overcome
verification
challenges is
critical for Risc-V
designers

their verification flow. Just because the
core has been formally verified though,
does not mean that its integration into
the design will be clean and free of
issues. All verification steps should be
re-run when introducing the Risc-V
core into the final design.

How do | verify that a Risc-V core is
integrated properly into the design?
Using a Formal solution geared
toward the complexities of Risc-V

is recommended. The process must
include automated code inspection

to rapidly eliminate many classes of
common coding and design errors,
before functional verification and logic
synthesis.

Verification of the RTL should be
done from three different perspectives.
The first is structural analysis — focused
syntactic and semantic analysis of
source code.

The second is safety checks,
exhaustive verification of the absence
of common sequential design operation
issues. The third perspective is activation
checks — proof that specific design
functions can be executed and are not
blocked due to unreachable code.

Interval property checking should
also be used as in the response to the
question “Is there a special Formal
technique for Risc-V only?”

I have added a custom instruction. Do |
need to re-verify the entire Risc-V core?
‘When anything is done to modify
the custom instruction, it means
functionality has been added or
changed.

To ensure that the design operates
as intended and does not do anything
unintended, a full re-verification is
strongly recommended.

I need a bug-free Risc-V core. What
vendors or open source core should | use?
Look for a vendor that provides open
source cores that have been exhaustively

verified using Formal methods. This will
dramatically reduce the chances of bug
escapes into the final design.

Be sure to ask for documentation
of the vendor’s verification process
so that you are sure that Formal has
been used. A good place to start for
formally verified open-source cores
is to check with the OpenHW Group
(www.openhwgroup.org). The core
development includes a verification
plan with Formal in mind.

Risc-V offers the benefits of
flexibility and customisation in
addition to reducing the processor cost
barrier. However, the benefits increase
the complexity and therefore may
complicate the verification process.

Understanding the verification
challenges and how to overcome them
is critical for any designer interested in
Risc-V.[_]

About the author

Rob van Blommestein is
vice-president of marketing at
OneSpin

www.electronicsweekly.com | 12 August 2020



