
RISC-V DESIGN TOOLS

 11 August 2021 | www.electronicsweekly.com22

A core challenge
 A common veri� cation methodology available to both RISC-V core providers and SoC teams integrating these cores is required,

argues Nicolae Tusinschi

Modern processor designs present some
of the toughest hardware verifi cation
challenges. Verifi cation is particularly
challenging for RISC-V processor core
designs, with many providers and many
variations of implementation.

The fl exibility that RISC-V provides
makes it especially diffi cult to verify.
First, the defi ned instruction set
architecture (ISA) has many optional
features and possible variations. The
processor has 32 registers that can be
32-, 64-, or 128-bit. The baseline I
instruction set has an optional E version
that supports only 16 32-bit registers
for embedded applications. Additional
instructions that may be supported
include:
 M extension for integer
multiplication/division;
 A extension for atomic read-modify-
write memory accesses;
 F extension for single-precision
(32-bit) fl oating point;
 D extension for double-precision
(64-bit) fl oating point;
 Q extension for quad-precision
(128-bit) fl oating point;
 C extension for compressed (16-bit)
instructions.

The optional fl oating-point
instructions add 32 more registers of
appropriate width. The RISC-V ISA
defi nes three privilege levels, nine
exceptions associated with privileged
instructions and 4096 control and status
registers. Just checking for compliance
to the ISA is a signifi cant challenge.
But full verifi cation of a RISC-V
core for functional correctness goes

beyond compliance. The ISA allows the
defi nition of custom instructions and
these must be verifi ed to ensure that
they work correctly without breaking
compliance of the standard instructions.
The RISC-V ISA was designed to map
to many diff erent microarchitectures,
from small controllers to multi-
core implementations with the most
advanced processor features. A
core provider must be able to verify
the entire design, including the
microarchitectural details, not just ISA
compliance. A core integrator may wish
to repeat some or all of this verifi cation
as an acceptance test. Finally, any
register transfer level (RTL) design
must be statically analysed to eliminate
common coding errors.

A methodology meeting all the
requirements for verifi cation of RISC-V
cores has to be based on formal
technology because any approach
based on simulation or emulation can
explore only a tiny percentage of design
functionality and there is no way to be
sure that constrained-random or hand-
crafted tests fi nd all the hardware bugs.

Why formal veri� cation
Only formal verifi cation can prove the
absence of something, in this case parts
of the design that might pose risks for
end applications with high security
or trust requirements. Such a formal-
based methodology has been developed
and deployed on multiple RISC-V
core designs. This methodology spans
functional correctness, security and trust
for RISC-V designs, and can be run by
both core providers and core integrators.

Inputs to the process include the core
RTL, the ISA compliance rules captured
formally and input from the core provider
on design decisions such as the number of
pipeline stages, which enables verifi cation
of the microarchitecture to support the
full range of RISC-V verifi cation.

The heart of the methodology is the
formalisation of the RISC-V ISA as a
set of SystemVerilog assertions using
an operational assertion library. This
approach defi nes high-level transactions
concisely, similar to timing diagrams to
capture the expected results for processor
instructions.

Each instruction in the RISC-V ISA is

captured in a single operational assertion
that applies to any microarchitectural
implementation of the instruction.
Formal engines verify that the processor
state at the end of each instruction’s
execution matches the specifi cation. This
formal approach fi nds all bugs related to
functional correctness and then proves
that no further bugs exist. It is fl exible
enough to handle user extensions beyond
the ISA (Figure 1).

 The formal engines verify the
complete RISC-V core beyond
ISA compliance, including the
microarchitecture. The methodology also
calls for running static analysis on the
core to fi nd common design errors, from
simple syntax mistakes and typographical
errors in the RTL to weaknesses that
could compromise the fi nal chip. This
process is fully automated, so many
design teams set it to run on every
attempt to check RTL code into a
revision-control system.

Some applications for RISC-V
processors have strict security
requirements so that malicious agents
cannot exploit vulnerabilities in the
design. Security verifi cation must include
a rigorous process to detect all bugs and
fl aws, establishing precisely what can and
cannot happen in the design.

The formal-based RISC-V verifi cation
methodology includes running a wide
range of automated checks on the core
RTL design, rapidly eliminating many
classes of common coding and design
errors. These checks include: structural
analysis (syntactic and semantic analysis
of source code); safety checks (exhaustive

Figure 1: Operational assertions applied to RISC-V ISA

www.electronicsweekly.com | 11 August 2021 23

DESIGN TOOLS RISC-V

Nicholae Tusinschi, product
manager, OneSpin, a Siemens
business

About the author

verifi cation of the absence of common
sequential design operation issues); and
activation checks (proof that all design
functions can be executed and are not
blocked due to unreachable code).

Some of the problems uncovered by
these checks represent security risks. For
example, an incomplete case statement
leaves unspecifi ed what will happen if an
unexpected value occurs. Such issues can
be found and fi xed automatically early in
the design process.

Malicious code
Inadvertent vulnerabilities are
worrisome, but deliberately inserted
malicious code (hardware Trojans) is
an even bigger concern for trust-critical
applications such as autonomous
vehicles and nuclear power plants.

Problems may creep in during logic
synthesis, either by deliberate action or
tool issues. Integration of cores such as
RISC-V processors presents extra risk
because the SoC team does not know
the details of those designs. Tool bugs
or intentional netlist modifi cations can
occur during the place and route process.
The RISC-V verifi cation methodology
includes two steps to ensure trust in a
processor core and extend to any SoC
integrating it.

Trust in the design itself relies on
formal verifi cation’s ability to detect
when a design can do something that it
is not supposed to do. Beyond verifying
compliance to the RISC-V ISA, the
methodology ensures that the set of
assertions covers the entire core design.

GapFreeVerifi cation technology
detects and reports any specifi cation
omissions and errors, holes in the
verifi cation plan, and unverifi ed RTL
functions. Any unexpected functionality
is fl agged, since it could potentially be
a hardware Trojan inserted during the
design process. Core providers want
their products to be trusted and core
integrators may want to verify that
trust themselves.

For the remainder of the development
fl ow beyond the RTL stage, the
RISC-V verifi cation methodology
uses formal equivalence checking to
ensure that no new logic is introduced
during logic synthesis or place and
route. This process also ensures that
the aggressive optimisations available
during implementation are appropriate

for the design and have not altered it in
some unexpected way. Verifying post-
synthesis and post-route netlists against
the input RTL specifi cation proven
correct ensures trust in every stage of the
core and SoC development process.

The verifi cation methodology
described has been deployed at multiple
sites and runs on multiple RISC-V
processor core implementations. Results
for two cores available from open-source
repositories can be shared publicly.

The fi rst is RI5CY, a 32-bit
implementation with a four-stage in-
order pipeline. It supports the IMFC
instruction sets plus customer instruction
set extensions intended for signal
processing. The RISC-V verifi cation
methodology has identifi ed 13 issues
to date, which have been reported back
to the RI5CY developers, who have
confi rmed four issues as bugs and fi xed
three. The remainder are still under
investigation.

The second design verifi ed by the
methodology is Rocket Core, a 64-bit
implementation of RISC-V with a fi ve-
stage, single-issue, in-order pipeline. It
has a sophisticated microarchitecture
with branch prediction, instruction
replay and out-of-order completion
for long-latency instructions such as
division. Five issues were found and
reported to the Rocket Core developers.

 One bug where the core contains an
undocumented non-standard instruction
was reported by the formal engines. The
unexpected instruction could have been
a hardware Trojan but it turned out that
the development team had added a new
instruction but had not yet documented
it in the specifi cation that the verifi cation
team used to develop operational
assertions for the custom instructions.
Any integration team that downloaded
the same version of the core would
have had unknown and undocumented
functionality in the design, but
GapFreeVerifi cation could have detected
and reported this. 

Figure 2: GapFreeVeri� cation � ow

Figure 3: RI5CY block diagram

Figure 4: Rock Core block diagram

