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A core challenge
 A common veri� cation methodology available to both RISC-V core providers and SoC teams integrating these cores is required, 

argues Nicolae Tusinschi 

Modern processor designs present some 
of the toughest hardware verifi cation 
challenges. Verifi cation is particularly 
challenging for RISC-V processor core 
designs, with many providers and many 
variations of implementation.  

The fl exibility that RISC-V provides 
makes it especially diffi  cult to verify. 
First, the defi ned instruction set 
architecture (ISA) has many optional 
features and possible variations. The 
processor has 32 registers that can be 
32-, 64-, or 128-bit. The baseline I 
instruction set has an optional E version 
that supports only 16 32-bit registers 
for embedded applications. Additional 
instructions that may be supported 
include:
 M extension for integer 
multiplication/division;
 A extension for atomic read-modify-
write memory accesses;
 F extension for single-precision 
(32-bit) fl oating point;
 D extension for double-precision 
(64-bit) fl oating point;
 Q extension for quad-precision 
(128-bit) fl oating point;
 C extension for compressed (16-bit) 
instructions.

The optional fl oating-point 
instructions add 32 more registers of 
appropriate width. The RISC-V ISA 
defi nes three privilege levels, nine 
exceptions associated with privileged 
instructions and 4096 control and status 
registers. Just checking for compliance 
to the ISA is a signifi cant challenge. 
But full verifi cation of a RISC-V 
core for functional correctness goes 

beyond compliance. The ISA allows the 
defi nition of custom instructions and 
these must be verifi ed to ensure that 
they work correctly without breaking 
compliance of the standard instructions. 
The RISC-V ISA was designed to map 
to many diff erent microarchitectures, 
from small controllers to multi-
core implementations with the most 
advanced processor features. A 
core provider must be able to verify 
the entire design, including the 
microarchitectural details, not just ISA 
compliance. A core integrator may wish 
to repeat some or all of this verifi cation 
as an acceptance test. Finally, any 
register transfer level (RTL) design 
must be statically analysed to eliminate 
common coding errors.

A methodology meeting all the 
requirements for verifi cation of RISC-V 
cores has to be based on formal 
technology because any approach 
based on simulation or emulation can 
explore only a tiny percentage of design 
functionality and there is no way to be 
sure that constrained-random or hand-
crafted tests fi nd all the hardware bugs.

Why formal veri� cation
Only formal verifi cation can prove the 
absence of something, in this case parts 
of the design that might pose risks for 
end applications with high security 
or trust requirements. Such a formal-
based methodology has been developed 
and deployed on multiple RISC-V 
core designs. This methodology spans 
functional correctness, security and trust 
for RISC-V designs, and can be run by 
both core providers and core integrators.

Inputs to the process include the core 
RTL, the ISA compliance rules captured 
formally and input from the core provider 
on design decisions such as the number of 
pipeline stages, which enables verifi cation 
of the microarchitecture to support the 
full range of RISC-V verifi cation.

The heart of the methodology is the 
formalisation of the RISC-V ISA as a 
set of SystemVerilog assertions using 
an operational assertion library. This 
approach defi nes high-level transactions 
concisely, similar to timing diagrams to 
capture the expected results for processor 
instructions. 

Each instruction in the RISC-V ISA is 

captured in a single operational assertion 
that applies to any microarchitectural 
implementation of the instruction. 
Formal engines verify that the processor 
state at the end of each instruction’s 
execution matches the specifi cation. This 
formal approach fi nds all bugs related to 
functional correctness and then proves 
that no further bugs exist. It is fl exible 
enough to handle user extensions beyond 
the ISA (Figure 1).

 The formal engines verify the 
complete RISC-V core beyond 
ISA compliance, including the 
microarchitecture. The methodology also 
calls for running static analysis on the 
core to fi nd common design errors, from 
simple syntax mistakes and typographical 
errors in the RTL to weaknesses that 
could compromise the fi nal chip. This 
process is fully automated, so many 
design teams set it to run on every 
attempt to check RTL code into a 
revision-control system.

Some applications for RISC-V 
processors have strict security 
requirements so that malicious agents 
cannot exploit vulnerabilities in the 
design. Security verifi cation must include 
a rigorous process to detect all bugs and 
fl aws, establishing precisely what can and 
cannot happen in the design. 

The formal-based RISC-V verifi cation 
methodology includes running a wide 
range of automated checks on the core 
RTL design, rapidly eliminating many 
classes of common coding and design 
errors. These checks include: structural 
analysis (syntactic and semantic analysis 
of source code); safety checks (exhaustive 

Figure 1: Operational assertions applied to RISC-V ISA



www.electronicsweekly.com | 11 August 2021  23

DESIGN TOOLS RISC-V

Nicholae Tusinschi, product 
manager, OneSpin, a Siemens 
business

About the author

verifi cation of the absence of common 
sequential design operation issues); and 
activation checks (proof that all design 
functions can be executed and are not 
blocked due to unreachable code).

Some of the problems uncovered by 
these checks represent security risks. For 
example, an incomplete case statement 
leaves unspecifi ed what will happen if an 
unexpected value occurs. Such issues can 
be found and fi xed automatically early in 
the design process.

Malicious code
Inadvertent vulnerabilities are 
worrisome, but deliberately inserted 
malicious code (hardware Trojans) is 
an even bigger concern for trust-critical 
applications such as autonomous 
vehicles and nuclear power plants. 

Problems may creep in during logic 
synthesis, either by deliberate action or 
tool issues. Integration of cores such as 
RISC-V processors presents extra risk 
because the SoC team does not know 
the details of those designs. Tool bugs 
or intentional netlist modifi cations can 
occur during the place and route process. 
The RISC-V verifi cation methodology 
includes two steps to ensure trust in a 
processor core and extend to any SoC 
integrating it.

Trust in the design itself relies on 
formal verifi cation’s ability to detect 
when a design can do something that it 
is not supposed to do. Beyond verifying 
compliance to the RISC-V ISA, the 
methodology ensures that the set of 
assertions covers the entire core design. 

GapFreeVerifi cation technology 
detects and reports any specifi cation 
omissions and errors, holes in the 
verifi cation plan, and unverifi ed RTL 
functions. Any unexpected functionality 
is fl agged, since it could potentially be 
a hardware Trojan inserted during the 
design process. Core providers want 
their products to be trusted and core 
integrators may want to verify that 
trust themselves.

For the remainder of the development 
fl ow beyond the RTL stage, the 
RISC-V verifi cation methodology 
uses formal equivalence checking to 
ensure that no new logic is introduced 
during logic synthesis or place and 
route. This process also ensures that 
the aggressive optimisations available 
during implementation are appropriate 

for the design and have not altered it in 
some unexpected way. Verifying post-
synthesis and post-route netlists against 
the input RTL specifi cation proven 
correct ensures trust in every stage of the 
core and SoC development process.

The verifi cation methodology 
described has been deployed at multiple 
sites and runs on multiple RISC-V 
processor core implementations. Results 
for two cores available from open-source 
repositories can be shared publicly. 

The fi rst is RI5CY, a 32-bit 
implementation with a four-stage in-
order pipeline. It supports the IMFC 
instruction sets plus customer instruction 
set extensions intended for signal 
processing. The RISC-V verifi cation 
methodology has identifi ed 13 issues 
to date, which have been reported back 
to the RI5CY developers, who have 
confi rmed four issues as bugs and fi xed 
three. The remainder are still under 
investigation. 

The second design verifi ed by the 
methodology is Rocket Core, a 64-bit 
implementation of RISC-V with a fi ve- 
stage, single-issue, in-order pipeline. It 
has a sophisticated microarchitecture 
with branch prediction, instruction 
replay and out-of-order completion 
for long-latency instructions such as 
division. Five issues were found and 
reported to the Rocket Core developers.

 One bug where the core contains an 
undocumented non-standard instruction 
was reported by the formal engines. The 
unexpected instruction could have been 
a hardware Trojan but it turned out that 
the development team had added a new 
instruction but had not yet documented 
it in the specifi cation that the verifi cation 
team used to develop operational 
assertions for the custom instructions. 
Any integration team that downloaded 
the same version of the core would 
have had unknown and undocumented 
functionality in the design, but 
GapFreeVerifi cation could have detected 
and reported this. 

Figure 2: GapFreeVeri� cation � ow

Figure 3: RI5CY block diagram

Figure 4: Rock Core block diagram


